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Turbulent mixing in spherical implosions

David L. Youngs® T and Robin J. R. Williams
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SUMMARY

We discuss the application of the numerical code TURMOIL to turbulent mixing in a simple spherical
implosion, a much simplified version of an inertial confinement fusion implosion. Some form of Monotone
integrated large eddy simulation is required to eliminate non-physical oscillations, as shocks and contact
discontinuities are present. The dissipation in the TURMOIL scheme is analysed. It is argued that this is
relatively low and that the ‘sub-grid’ dissipation can be precisely quantified. © British Crown Copyright
2007/MOD. Reproduced with permission. Published by John Wiley & Sons, Ltd.
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1. INTRODUCTION

A large eddy simulation (LES) technique, TURMOIL, which uses a Lagrange-remap finite dif-
ference numerical method, has been very successfully applied to a range of Rayleigh-Taylor (RT)
and Richtmyer-Meshkov (RM) mixing problems [1, 2]. In the Lagrange phase, artificial viscosity
models dissipation due to shocks. The remap phase uses third-order monotonic advection; the re-
sulting implicit dissipation provides the ‘sub-grid’ dissipation required for turbulence simulations.
Here, we analyse the dissipation in this scheme. It is argued that this is relatively low and that the
sub-grid dissipation can be precisely quantified. It is shown that TURMOIL performs very well at
low Mach numbers. For Godunov schemes, at least those widely used at present, dissipation can
become large as the Mach number becomes small [3]. To illustrate this point, TURMOIL results
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are compared with those from a piecewise parabolic method (PPM) method for a simple Kelvin—
Helmbholtz test problem. Low Mach number behaviour is very important in compressible LES as,
even in highly compressible flow, the Mach number of the turbulence is usually low.

Results are also shown for a simple spherical implosion, a much simplified version of an inertial
confinement fusion (ICF) implosion. The two fluids are miscible and viscosities are assumed to
be very small so that high Reynolds number turbulent mixing occurs. A spherical polar mesh is
used to calculate the mixing. During the implosion both RT and RM instabilities occur. The effect
of mesh size is investigated and it is concluded that the averaged properties of the mixing zone
are close to being mesh converged.

2. A SIMPLE SPHERICAL IMPLOSION

The initial geometry for the unperturbed spherical implosion, in dimensionless units, has density
p=0.05 for 0<r<10 and p=1.0 for 10<r<12, with pressure p =0.1 throughout. Perfect gas
equations of state are used with p =(y — 1)e, where e is the specific internal energy and y = %
The ratio of the specific heats between the two fluids is 20:1, giving equal initial temperatures in
the two regions. The implosion is driven by applying a varying pressure at the outer boundary,
which moves with the flow from r =12 initially. The applied pressure is p =10.0 for 0<t<0.5,
thereafter decreasing linearly to p =0.0 at r =3.0.

The radius—time plot obtained from a 1D Lagrangian calculation is shown in Figure 1. RM insta-
bility occurs when the incident shock wave passes through the interface between fluids at r ~ 0.5,
amplifying the initial perturbation. Turbulent mixing occurs towards the end of the implosion,
when the interface decelerates, due to a combination of RT and RM instabilities.
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Figure 1. Radius—time plot for the spherical implosion. Solid lines: boundaries of the dense spherical
shell. Stars: shock positions.
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3. THE NUMERICAL METHOD

3.1. The Lagrange-remap method

TURMOIL uses a Lagrange-remap method [4]. A mass fraction advection equation is used for gas
mixtures [2]. The Lagrange phase calculates the changes in velocity and internal energy due to the
pressure field. A staggered mesh is used with velocity components defined at cell corners and with
density, mass fraction and internal energy defined at cell centres. A finite difference approximation
is used which is second-order accurate in space and time and conserves total energy. Quadratic
artificial viscosity, g, is used to provide the dissipation due to shocks, where g ~ pAx?(du/dx)? for
1D problems. In this section, partial derivatives denote centred differences. There are oscillations
behind shocks—the treatment of shocks is not as good as in second-order Godunov methods.
However, the method does have one very useful property: the irreversible dissipation of kinetic
energy in the Lagrangian phase,

o=—qV-u (1)

is negligible for low Mach number, near incompressible flow. All three spatial directions are
calculated simultaneously in the Lagrange phase.

The remap phase calculates advective fluxes and may be regarded as a mapping of the configu-
ration at the end of the Lagrangian phase back to the original mesh. Alternatively, near-Lagrangian
mesh motion can be used in the radial direction to reduce numerical diffusion in implosion prob-
lems. The advection is calculated in separate 1D sweeps using a third-order monotonic method
based on the work of van Leer. The order of the sweeps is reversed every time step. Several
Lagrange steps may be performed per remap step, significantly increasing the efficiency of low
Mach number calculations. The method gives exact monotonic behaviour i.e. fluid variables at
the end of the remap phase lie with the range of neighbouring values at the end of the Lagrange
phase.

The remap phase conserves mass, internal energy and momentum. However, kinetic energy is
dissipated. The loss of kinetic energy in the remap phase, er, may be quantified precisely as a
function of position by the simple algebraic technique of DeBar [5] and may be added on to the
internal energy to recover total energy conservation. This technique may also be used to quantify
the ‘sub-grid’ dissipation. For small time steps the algebraic DeBar formula can be interpreted as
a numerical approximation to the differential form:

1 51/!,'
~ — A us 2
ER = ?,j: 2,0|uz| jUi 5)(/' (2)

where Aju; is the velocity jump for u; in the x; direction constructed at the momentum cell
boundary for calculation of the monotonic advection flux. Dissipation occurs where there are steep
velocity gradients and is negligible in well-resolved flow regions, where Au — 0. The resulting
dissipation is comparable with that obtained with an explicit sub-grid-scale model.

3.2. Low Mach number behaviour
The spherical implosion is driven by strong shocks. However, the turbulence Mach number is

relatively low (~0.1) and at the end of the implosion, when most of the mixing occurs, the flow
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Figure 2. Low Mach number behaviour for Kelvin—Helmholtz test problem.
Left: TURMOIL. Right: PPM calculation.

is weakly compressible between shocks. Hence, it is essential that the numerical method used
has an adequate treatment for shocks and good behaviour at low Mach number. The latter can
be characterized by a simple example, the roll-up of a vortex sheet. Figure 2 shows TURMOIL
results using 16 x 16 zones at Mach numbers (initial velocity difference/sound speed) of 0.2 and
0.02. The results are almost identical, as expected in this limit.

It is interesting to consider what would happen if a second-order Godunov method were used
in the Lagrange phase. This could certainly give a better treatment for shocks. Figure 2 includes
results obtained with VHI, a freely available Godunov code, which uses a PPM Lagrange-remap
method [6]. With this code, the vortex is strongly dissipated at M = 0.02. It was shown in [3] that
the dissipation in first-order Godunov methods increases as the Mach number is reduced. Now
it is apparent from Equation (2) that the scheme must generate non-zero velocity jumps where
there is unresolved structure in order to provide the required sub-grid dissipation. The test problem
(chosen to represent a poorly resolved eddy in a LES) suggests that the dissipation at small scales
is significantly enhanced in strictly monotone Godunov schemes.

Further insight comes from RM Christensen, see Benson [7], who argued that the use of a
Godunov method in a 1D Lagrangian calculation is approximately equivalent to using a ‘monotonic

’
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where ¢ is the sound speed, y the specific heat ratio and Au is the velocity jump reconstructed
at the cell boundary. The term linear in Au then gives, for a 3D simulation solving 1D Riemann
problems in each direction:
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The dissipation in the Lagrange phase does not vanish when V -u =0 and, when the Mach number
is low, becomes greater than the diagonal terms in Equation (2).

In TURMOIL, dissipation does not increase as the Mach number is reduced since e
(Equation (1)) goes to zero for incompressible flow while eg (Equation (2)) is independent of
the sound speed. This low Mach number behaviour in TURMOIL is better than many Godunov
methods. However, work on improving the low Mach number behaviour of Godunov methods [8]
may make them well suited for calculating compressible turbulent flow.
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4. 3D SIMULATIONS

3D simulations were carried out for a sector of the sphere centred at the equator, /2 —/8<#6, ¢p<
n/2 + n/8. This reduces the computational resources needed and avoids the mesh singularity at
0=0. The r-ordinates of the mesh are moved with the mean radial flow to reduce numerical
diffusion, i.e. a semi-Lagrangian calculation is performed. Moreover, the angular zones are merged
near the origin, 0<rp<2.5, and near the outer boundary, 11.3<ry<12, where ry denotes the initial
radius. This overcomes the problem associated with the mesh singularity at the origin and also
limits the 3D calculation to the region near the interface where mixing occurs. The number of zones
used in the 7, 0 and ¢ directions is as follows: coarse: 220 x 120 x 120; standard: 440 x 240 x 240;
fine: 880 x 480 x 480. The latter ran for 160 h (wall clock time) using 288 processors of the AWE
IBM SP.

Random amplitude perturbations are initially applied to the light fluid/dense fluid interface. The
power spectrum used is P (k) = Ck~2if kmin <k <kmax, P (k) =0 otherwise. ki, =2n/(2.0) and
kmax =2m/4As, with As the radial mesh width at the interface. The constant C is chosen so that
the s.d. of the perturbation is ¢ =0.0005, where o= fooo P (k) dk.

Figure 3 shows sections from the standard mesh simulation. The shading represents the volume
fraction of the denser fluid. The sector used in the computation has been repeated eight times to
produce a full circle. Figure 4(a) shows the turbulent mixing zone limits versus time for the three
simulations, i.e. the values of r at which the dense fluid volume fraction averaged over solid angle,
(f), is equal to 0.01 and 0.99. Figure 4(b) shows distributions of the dense fluid volume fraction
at the end of the simulations. The width of the mixing zone reduces slightly as the mesh is refined.
However, the effect of mesh size is not very large and this suggests that the fine mesh calculation
should give a good indication of the amount of mixing.

Figure 5(a) shows the distribution of resolved turbulence kinetic energy, k, at the end of the
simulations. This is defined by k = %(p{(u — )24+ 02+ wz})/(p), where (-) denotes the angular
average and u is the mass-weighted mean radial velocity. The kinetic energy dissipation in the
Lagrange and remap phases, Equations (1) and (2), is shown in Figure 5(b). At ¢ =3, when there
are no significant shocks, dissipation in the Lagrangian phase is negligible as required. The results
on the standard and fine meshes are similar for both characteristics.

(a) (b) ()

Figure 3. 2D sections through the 3D mesh for the spherical implosion, before, near and after maximum
compression: (a) t =2.0; (b) 1 =2.4; and (c) t =2.8.
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Figure 4. (a) Development of mixing zone width and (b) distributions of the dense fluid at r = 3.
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Figure 5. Flow characteristics at t =3. (a) Resolved turbulence kinetic energy and (b) angle-averaged
dissipation per unit mass. The dissipation in the remap phase, ¢r, is compared with ¢r,, the dissipation in
the Lagrange phase (due to shocks).

5. CONCLUSIONS

Accurate 3D numerical simulations have been performed for turbulent mixing in simple spherical
implosions. Higher resolution simulations are planned in the near future using the AWE Cray
XT3 (8000 processing elements) to confirm mesh convergence. The TURMOIL hydrocode used
has good low Mach number behaviour, a key requirement for calculation of turbulent flow. The
kinetic energy dissipation in the simulations has been accurately quantified. Our results suggest
that the ‘sub-grid’ dissipation is close to being mesh converged. While detailed 3D simulation is
impractical for many real problems, results of the type shown here are essential for calibrating and
validating engineering models for use in real applications.
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